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Abstract
Electromagnetic drift waves in a nonuniform quantum magnetized electron–
positron–ion (EPI) plasma are studied. By using the quantum hydrodynamic
equations with magnetic fields of the Wigner–Maxwell system, we obtained
a new dispersion relation in which ions’ motions are not considered. The
positrons component (featured by the parameter ξ ), density gradient of
electrons, and of positrons are shown to have a significant impact on the
dispersion relation. Our results should be relevant to dense astrophysical
objects, e.g. white dwarf and pulsar magnetospheres, as well as low-temperature
laboratory EPI plasmas.

PACS numbers: 52.27.Aj, 03.65.−w, 52.35.Kt

1. Introduction

As a new emerging area in plasma physics, quantum plasma has received a great deal of
attention [1–6]. Quantum effects are well known for playing a crucial role in the behavior of
the charged plasma particles when the de Broglie wavelength of the charge carriers becomes
equal to or greater than the dimension of the quantum plasma system [7]. In such cases,
quantum plasma behaves like a Fermi gas. They may consist of electrons, ions, positrons,
holes and/or grains. Two well-known models, the Wigner model and Hartree model, are
used to study quantum plasma systems. The former describes the statistical behavior
of plasmas of the Wigner–Poisson system, whereas the latter describes the hydrodynamic
behavior of plasmas of the Schrödinger–Poisson system [7, 8]. The quantum hydrodynamic
(QHD) model describing the transport of charge, momentum and energy in plasmas has
been introduced in semiconductor physics [9]. Quantum effects also appear in ultra-small
electronic devices [10], astrophysics [11–13] and high intensity laser systems [14]. The
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quantum magnetohydrodynamic (QMHD) model was also obtained [15] by using the QHD
model with a magnetic field based on the Wigner–Maxwell equations.

In recent years, investigations in quantum plasmas such as Landau damping [16], plasma
echoes [17], surface wave [18], Debye screening [19], Bernstein–Greene–Kruskal equilibria
[20], Zakharov equations [21] and stream instability [3, 22–24] have been extensively studied
with quantum effects corrections. Recently, the spin properties in quantum plasmas have
attracted much interest [25, 26] too. Two typical low-frequency waves, ion-acoustic waves
and drift waves, are of special interest [5, 27–29]. The presence of plasma spatial gradients
across a confining magnetic field leads to diamagnetic plasma currents which flow in the
direction mutually perpendicular to the gradient of plasma density and the direction of the
magnetic field. The diamagnetic drift currents flowing across the magnetic field produce
the Lorentz J × B force. This force balances both the expansion force due to the plasma
pressure gradient and the Coulombic force in equilibrium. The Coulombic interactions
between the charged particles give rise to collective oscillations which are known as drift waves
in the magnetized plasma. There are many ways to study this wave. The electromagnetic
and electrostatic modes are two familiar drift modes existing in plasmas systems. Shukla
and Ali have derived the dispersion relations of new electromagnetic drift modes existing
in cold quantum magnetoplasmas by using quantum magnetohydrodynamic equations with
and without ions’ motions [29]. The usual electron–ion plasmas were used in their study.
In this paper, the authors study the electromagnetic drift waves in a nonuniform quantum
magnetized electron–positron–ion (EPI) plasmas. The pressure term is also to be considered
in our investigation.

Using the quantum hydrodynamic equations with a magnetic field [15], and making
several approximations (i.e. wavelengths are smaller than the characteristic length of the
plasma inhomogeneity and the wave frequencies are much smaller than the electron Larmor
frequency), we derive the dispersion relation for the low-frequency electromagnetic drift
mode, taking into account the quantum corrections and the density gradient of electrons
and positrons. The positrons component effects on the dispersion relation are shown to be
significant by our results, which will be presented in following sections. Section 2 introduces
the basic mathematical model based on the quantum hydrodynamic equations and Maxwell
equations in quantum nonuniform magnetized EPI plasmas. The dispersion relation when ion
motions are ignored is derived in section 3. Specific discussions on the dispersion relation are
presented in section 4. And finally, we give a brief summary in section 5.

2. Mathematical model

In the present work, we consider a nonuniform quantum plasma composed of electrons,
positrons and singly charged ions. The plasma is assumed to be placed in an external magnetic
field B0 = B0ẑ, where ẑ is the unit vector along the z-direction. Number density nj0(x) is
assumed to be inhomogeneous along the x-direction, where nj0 is the equilibrium number
density of species j and j = i, p, e represents ions, positrons and electrons, respectively. The
quasi-neutrality condition reads as ni0 + np0 = ne0. The basic quantum fluid model reads

∂nj

∂t
+ ∇ · (nj uj ) = 0, (1)

mj

duj

dt
= qj (E + uj × B) − 1

nj

∇Pj +
h̄2

2mj

∇
(

∇2√nj√
nj

)
, (2)
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which is supplemented by the Poisson equation

∇2φ = e

ε0
(ne − ni − np), (3)

and Ampère’s law

∇2A = e

c2ε0
(neue − npup − niui ). (4)

Here, nj , uj , mj and Pj are the number density, velocity, mass and pressure of species j ,
respectively; E is the electric field and B is the magnetic field; φ is the electrostatic potential,
A is the vector potential, e is the magnitude of the electronic charge, and c is the speed of
light, while ε0 and h̄ are the dielectric and scaled Planck’s constants. The quantum effects are
represented by the last h̄-dependent term on the right-hand side of equation (2), the so-called
Bohm potential. But we stress that the pressure term contains both the Fermi pressure, PFj , and
the thermal pressure, Ptj . Since ions do not have enough time to respond to perturbations when
the wave frequency is high enough, ions can be assumed to be immobile. In the next context,
when we mention species j , we mean electrons and positrons only. Now we introduce the
following parameters for convenience: χe = ∂ ln ne0/∂x, χp = ∂ ln np0/∂x and ξ = np0/ne0,
where χe (χp) denotes the characteristic length of the electrons (positrons) inhomogeneity and
ξ denotes the positrons component. A quantity ϕ is assumed to have the following form:

ϕ = ϕ0 + ϕ1,

where ϕ0 is the unperturbed value and ϕ1 is a small perturbation according to exp (ik · r − iωt).
Here, ω is the wave frequency and k is the wave vector. Weak inhomogeneity approximation
can be described by χj/k � 1. ξ is assumed to be much less than 1, which means that the
positrons number density is much lower than that of the electrons. An arbitrary vector M can
been written as M⊥ + Mzẑ, where M⊥ and Mz are the components perpendicular and parallel
to the z-axis, respectively. Therefore, a set of linearized equations can be expressed as [29]

∂ne1

∂t
+ ∇⊥ · (ne0ue⊥) + ne0

∂uez

∂z
= 0, (5)

∂np1

∂t
+ ∇⊥ · (np0up⊥) + np0

∂upz

∂z
= 0, (6)

me

∂ue⊥
∂t

= e∇⊥φ − eB0ue⊥ × ẑ +
h̄2

4me

∇⊥

(∇2ne1

ne0

)
− 1

ne0
∇⊥Pe1, (7)

mp

∂up⊥
∂t

= −e∇⊥φ + eB0up⊥ × ẑ +
h̄2

4mp

∇⊥

(∇2np1

np0

)
− 1

np0
∇⊥Pp1, (8)

me

∂uez

∂t
= −eEz +

h̄2

4me

∂

∂z

(∇2ne1

ne0

)
− 1

ne0

∂Pe1

∂z
, (9)

mp

∂upz

∂t
= eEz +

h̄2

4mp

∂

∂z

(∇2np1

np0

)
− 1

np0

∂Pp1

∂z
, (10)

∇2φ = e

ε0
(ne1 − np1), (11)

∇2Az = e

c2ε0
(ne0uez − np0upz). (12)

3
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Here, ∇⊥ = x̂∂/∂x + ŷ∂/∂y, where x̂ and ŷ are the unit vectors along the x- and y-axes. By
the way, we point out that the exact expression of the first order of the Bohm potential is

h̄2

4mj

∇
[

∇2nj1

nj0
− ∇nj0 · ∇nj1

n2
j0

+
(∇nj0)

2

n3
j0

nj1 − ∇2nj0

n2
j0

nj1

]
.

By taking account of kx � k and the weak inhomogeneity approximation χj � k, the formula
above can be simplified by keeping only the first term in the square brackets.

3. Analytical development

By carrying out the operation as done by Shukla and Ali in [29], the Poisson equation can be
written as ne1 = ε0∇2φ/e + np1. Adopting the latter in equations (7) and (8), we obtain

me

∂ue⊥
∂t

= e∇⊥φe − eB0ue⊥ × ẑ − 1

ne0
∇⊥Pe1, (13)

and

mp

∂up⊥
∂t

= −e∇⊥φp + eB0up⊥ × ẑ − 1

np0
∇⊥Pp1, (14)

with

φe = (
1 + λ4

qe∇4
)
φ +

h̄2

4mene0e
∇2np1, (15)

φp = φ − h̄2

4mpnp0e
∇2np1, (16)

where λqe = (
h̄2

/
4m2

eω
2
pe

)1/4
is the electron quantum wavelength, ωpe = (e2ne0/meε0)

1/2

is the electron plasma frequency. In the drift approximation |∂/∂t | � ωce, we obtain the
perpendicular velocities from equations (13) and (14) as

ue⊥ � ẑ × ∇⊥
(
1 + λ4

qe∇4
)
φ

B0
− ẑ × ∇⊥Pe1

ene0B0
+

1

B0ωce

∂

∂t
∇⊥

(
1 + λ4

qe∇4)φ
+

h̄2

4meeB0
ẑ × ∇⊥

(∇2np1

ne0

)
+

h̄2

4meeB0ωce

∂

∂t
∇⊥

(∇2np1

ne0

)

− 1

eB0ne0ωce

∂

∂t
∇⊥Pe1, (17)

up⊥ � ẑ × ∇⊥φ

B0
+

ẑ × ∇⊥Pp1

enp0B0
− 1

B0ωcp

∂

∂t
∇⊥φ − 1

eB0np0ωce

∂

∂t
∇⊥Pp1

− h̄2

4mpeB0
ẑ × ∇⊥

(∇2np1

np0

)
+

h̄2

4mpeB0ωcp

∂

∂t
∇⊥

(∇2np1

np0

)
, (18)

where ωce(ωcp) is the electron (positron) gyrofrequency. There is ωce = ωcp = eB0/me.
Subtracting equation (6) from equation (5) and using ne0uez − np0upz = ∇2Az/µ0e, we find

∂2

∂t2
∇2φ +

e

ε0
∇⊥ · ∂

∂t
(ne0ue⊥ − np0up⊥) + c2 ∂

∂z
∇2 ∂Az

∂t
= 0. (19)

Using equations (9), (10), (12) and Ez = −∂φ/∂z − ∂Az/∂t from above, we get

c2∇2

ω2
pe

∂Az

∂t
=

(
∂φ

∂z
+

∂Az

∂t

) (
1 +

np0

ne0

)
+ λ4

qe∇4 ∂φ

∂z
− 1

ene0

(
∂Pe1

∂z
− ∂Pp1

∂z

)
. (20)

4
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For long wavelengths, such that h̄k/m � vF � ω/k, the pressure term for species j

can be written as ∇Pj1 = mjv
2
j∇nj1, where v2

j denotes v2
tj + 3v2

Fj /5: vtj = √
Tj/mj is the

thermal velocity and vFj = (h̄/mj )(3π2nj )
1/3 is the Fermi velocity of species j [1, 7, 6].

Using this relation, we have

∂Az

∂t
= −

(
1 + ξ + λ4

qe∇4 − v2
e ∇2

ω2
pe

)
∂φ

∂z
− me

ene0

(
v2

e − v2
p

) ∂np1

∂z

1 + ξ + c2k2

ω2
pe

. (21)

By substituting the above formula, equations (17) and (18) into equation (19), we can write
equation (19) as

∂2

∂t2
∇2φ +

e

ε0
∇⊥ ·

[
ne0

B0
ẑ × ∇⊥

(
1 + λ4

qe∇4
)∂φ

∂t
+

ne0

B0ωce

∂2

∂t2
∇⊥

(
1 + λ4

qe∇4
)
φ − np0

B0
ẑ

×∇⊥
∂φ

∂t
+

np0

B0ωce

∂2

∂t2
∇⊥φ − 1

eB0ωce

∇⊥
∂2

∂t2
Pe1 +

1

eB0ωcp

∇⊥
∂2

∂t2
Pp1

]
+ F

− c2 ∂

∂z
∇2

(
1 + ξ + λ4

qe∇4 − v2
e∇2

/
ω2

pe

)
∂φ/∂z − (me/ene0)

(
v2

e − v2
p

)
∂np1/∂z

1 + ξ + c2k2/ω2
pe

= 0, (22)

with

F = e

ε0
∇⊥ · ∂

∂t

[
ne0h̄

2

4meeB0
ẑ × ∇⊥

(∇2np1

ne0

)
+

ne0h̄
2

4meeB0ωce

∂

∂t
∇⊥

(∇2np1

ne0

)

+
h̄2

4mpeB0
ẑ × ∇⊥

(∇2np1

np0

)
− h̄2

4mpeB0ωcp

∂

∂t
∇⊥

(∇2np1

np0

)]
. (23)

Considering the drift approximation |∂/∂t | � ωce and using equation (2), we obtain
∂np1/∂t � −∇⊥ · (np0ẑ × ∇⊥φ)/B0. In this case, F can be simplified as

F � −λ4
qek

2k2
yξχp(χe + χp)

ω4
pe

ω2
ce

φ, (24)

which can be neglected in equation (22) in our model. The pressure terms and the last term
containing np1 in equation (22) can be simplified in the same way. Finally, we obtain

ω2 − 
1ω − 
2 = 0, (25)

where


1 =
ω2

pe

ωce
χeky

(
1 + k4λ4

qe

) − ω2
pe

ωce

[
1 +

k2
⊥(v2

e −v2
p)

ω2
ce

]
ξχpky

k2 +
ω2

pe

ω2
ce

(
1 + ξ + k4λ4

qe + k2v2
e

ω2
pe

)
k2
⊥ − ω2

pe

ω2
ce

[(
1 − λ4

qek
4 + 4k2v2

Fe

3ω2
pe

)
χe + ξχp

]
ikx

, (26)

and


2 =
k2
z c

2 1+ξ+k4λ4
qe+k2v2

e /ω
2
pe

1+ξ+c2k2/ω2
pe

k2

k2 +
ω2

pe

ω2
ce

(
1 + ξ + k4λ4

qe + k2v2
e

ω2
pe

)
k2
⊥ − ω2

pe

ω2
ce

[(
1 − λ4

qek
4 + 4k2v2

Fe

3ω2
pe

)
χe + ξχp

]
ikx

. (27)

The solution of equation (25) is

ω = 
1

2
±

√

2

1 + 4
2

2
. (28)

This is the dispersion relation of electromagnetic drift waves in a nonuniform quantum
magnetized EPI plasma, where the pressure effects have been taken into account. The effects

5
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on the dispersion introduced by the positrons component are represented by the parameters
χp and ξ , while the effects due to the pressure are represented by the parameters v2

e and v2
p.

With variable values of these parameters, this dispersion relation will help us comprehensively
understand the electromagnetic drift waves in high-density and low-temperature quantum EPI
plasmas.

A special case is as follows: ξ = 0, χekx � k2
⊥, c2k2

/
ω2

pe � 1 and v2
e = 0. Accordingly,

our results can be simplified and hence, equations (26) and (27) become


1 =
ω2

pe

ωce
χeky

(
1 + k4λ4

qe

)
k2 +

ω2
pe

ω2
ce

(
1 + k4λ4

qe

)
k2
⊥

, (29)

and


2 = k2
z c

2
(
1 + k4λ4

qe

)
k2
⊥

k2 +
ω2

pe

ω2
ce

(
1 + k4λ4

qe

)
k2
⊥

, (30)

which are exactly identical with the results reported in [29].

4. Discussions

In the previous section, we obtained the general dispersion relation of electromagnetic
drift waves. Full discussions can be given by using equation (28). In this section, some
detailed discussions are presented. Equation (25) gives two electromagnetic drift modes:
ω = 
1/2 +

√

2

1 + 4
2
/

2 and ω = 
1/2 −
√


2
1 + 4
2

/
2. The two modes become one

mode when we set the parallel wave number kz equal to zero. Then, the dispersion relation
equation (28) turns to ω = 
1 = ωr + iγ , where ωr is the real part and iγ is the imaginary
part of ω. Now, the drift mode is unstable and the growth rate is

γ =
{
χeky

(
1 + k4λ4

qe

) − [
1 +

k2
⊥(v2

e −v2
p)

ω2
ce

]
ξχpky

}ω4
pe

ω3
ce

[(
1 − λ4

qek
4 + 4k2v2

Fe

3ω2
pe

)
χe + ξχp

]
kx[

k2 +
ω2

pe

ω2
ce

(
1 + ξ + k4λ4

qe + k2v2
e

ω2
pe

)
k2
⊥
]2

+
{ω2

pe

ω2
ce

[(
1 − λ4

qek
4 + 4k2v2

Fe

3ω2
pe

)
χe + ξχp

]
kx

}2
. (31)

The value of growth rate is always positive as we have assumed that χe is greater than ξχp,
implying that the wave perturbations grow as time evolves. However, equation (31) also
indicates that the growth rate is approximatively proportional to χ2

e while ωr is proportional
to χe from equation (28). Note that the value of unperturbed electron number density gradient
χe is very small, thus the growth rate is very small too. Actually, one gets

γ

ωr

� (χe + ξχp)kx

k2
� 1, (32)

which implies the real frequency is much great than the growth rate.
As the diamagnetic drift ∇ne0(x)× ẑ is along the y-direction and from equations (26) and

(27), we can set wave number kx and kz to be equal to zero in a simple case where the parallel
motion is negligible. Accordingly, one gets γ = 0 from equation (31). So the perturbation is
stable. Then we have k = k⊥ = ky . As a result, the dispersion relation from equation (28)
becomes

ω =
χe

(
1 + k4λ4

qe

) − [
1 +

k2(v2
e −v2

p)

ω2
ce

]
ξχp

k +
ω2

pe

ω2
ce

(
1 + ξ + k4λ4

qe + k2v2
e

ω2
pe

)
k

ω2
pe

ωce

. (33)

In order to see how quantum effects corrections and positrons component affect the dispersion
relation of electromagnetic drift wave more explicitly, we plot the relationship between the

6
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Figure 1. The wave frequency of electromagnetic drift wave versus the wave number. To illustrate
the effects due to positron component, we have used the following constants and parameters:
e = 1.9×10−19 C, me = 9.11×10−31 kg, h̄ = 1.055×10−34 J s, and ε0 = 8.854×10−12 F m−1;
number density ne0 = 5.0 × 1030 m−3 and magnetic field B0 = 102 T; number density gradients
χe = χp = 10−6 m−1.

Figure 2. The wave frequency of electromagnetic drift wave versus the wave number. Number
density gradients χe = 10−6 m−1 and χp = 0. All other constants and parameters are the same in
figure 1.

frequency ω and the wave number k in figures 1–3, where we have omitted the thermal
velocities. Although we have mentioned that the pressure terms contained both the Fermi
pressure and the thermal pressure, we now stress that our model should be relevant when
the following ordering on the temperatures is satisfied: Te � TFe, Tp � Te. This condition
can be easily satisfied in some dense astrophysical environments such as white dwarfs and
neutron stars. In these dense astrophysical circumstances, the electron number density and the

7
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Figure 3. The wave frequency of electromagnetic drift wave versus the wave number when
ξ = 0.1. Number density gradients χe = 10−6 m−1 and χp = 0 (solid curve), χp = χe/2 (dashed
curve) and χp = χe (dotted curve). All other constants and parameters are the same in figure 1.

magnetic field are huge enough so that quantum effects will become remarkable and dominant
[2, 7]. The thermal effects can be safely neglected.

The effects of the positrons component on the dispersion relation are shown in figure 1.
The figure shows that the frequency decreases with increasing value of ξ . In fact, it is not hard
to find from equation (22) that

∂ω/∂ξ < 0. (34)

Therefore, the wave frequency is a monotonic function that decreases as parameter ξ increases,
as confirmed by figure 1.

Figure 2 shows the dispersion relation when we set the positrons number density gradient
χp equal to zero. Our purpose is to illustrate how the electrons number gradient and
positrons component affect the dispersion relation when the positron density gradient effects
are excluded. In this case, we also have ∂ω/∂ξ < 0, and figure 2 confirms that. Furthermore,
we obtain that there is

∂ω

∂χp

= −
[
1 +

k2(v2
e −v2

p)

ω2
ce

]
ξ

k +
ω2

pe

ω2
ce

(
1 + ξ + k4λ4

qe + k2v2
e

ω2
pe

)
k

ω2
pe

ωce

< 0 (35)

from equation (33), suggesting that the wave frequency decreases monotonically as χp

increases. This is confirmed by figure 3.

5. Summary

In conclusion, we have investigated the electromagnetic drift waves in nonuniform quantum
magnetized EPI plasmas on the basis of the QHD model with magnetic field. The genetic
dispersion relation was obtained. In our calculations, we have taken account of the thermal
and Fermi pressure terms. Besides, a parameter ξ = np0/ne0 is introduced to represent the
positrons component. Our results indicate that the drift wave is unstable when the wave vector
k has a component along the x-axis and the growth rate is approximately proportional to the

8
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square of the electrons number density gradient. On the contrary, the wave is stable when
the wave vector k has only a component along the y-direction and then the wave frequency
monotonically increases as ξ decreases. The density gradient of positrons χp also affects the
dispersion and the wave frequency is proved to be a monotonic function that decreases as χp

increases. The effect of the large parallel component of the wave vector and the spin properties
will be the focus of our future research. Finally, we point out that the results of the present
paper can be of particular significance for dense astrophysical environments, as well as some
low-temperature and high-density plasmas systems.
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